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Abstract: In this paper, design low pass FIR filter with rounding 
technique. The design is based on the remez exchange algorithm 
(RE) for the design of high pass filters. Linear phase FIR filter 
with coefficients consisting of nearest quantized value is 
provided. Results are obtained as a sum or difference of two 
power of two. 
Keywords: remez exchange algorithm, optimal filter, power of 
two, rounding technique. 
 

1 INTRODUCTION 
Last decade so many papers are published in this technique. 
First we design low pass filter using remez exchange (RE) 
algorithm. Because this algorithm is provided to minimize the 
error in pass and stop band s by utilizing the chebyshev 
approximation. The parks-McClellan algorithm is a variation 
of the remez exchange, with the change that it is specifically 
designed for FIR filters and has become a standard method 
for FIR filter design.[4]. The discrete coefficient space 
discussed in [2] is the “power-of-two” space where each 
coefficient value is represented as a sum or difference of 
several power-of-two number. Introduction of rounding 
method discussed in [ ] is provide nearest integer value. In 
Section II the optimal filter design using remez exchange 
algorithm. In Section III discussed the discrete 
programming using rounding method.  
 

II OPTIMAL FILTER DESIGN USING REMEZ EXCHANGE 
The Remez algorithm (sometimes also called Remes 
algorithm, Remez/Remes exchange algorithm, or simply 
Exchange algorithm), published by Evgeny Yakovlevich 
Remez in 1934 is an iterative algorithm used to find simple 
approximations to functions, specifically, approximations by 
functions in a Chebyshev space that are the best in the 
uniform norm L∞ sense. 
is an application of the Chebyshev alternation theorem that 
constructs the polynomial of best approximation to certain 
functions under a number of conditions. The Remez 
algorithm in effect goes a step beyond the minimax 
approximation algorithm  to give a slightly finer solution to 
an approximation problem.  
Parks and McClellan (1972) observed that a filter of a given 
length with minimal ripple would have a response with the 
same relationship to the ideal filter that a polynomial of 
degree of best approximation has to a certain function, 
and so the Remez algorithm could be used to generate the 
coefficients.  

In this application, the algorithm is an iterative procedure 
consisting of two steps. One step is the determination of 
candidate filter coefficients from candidate "alternation 
frequencies," which involves solving a set of linear equations. 
The other step is the determination of candidate alternation 
frequencies from the candidate filter coefficients (Lim and 
Oppenheim 1988). Experience has shown that the algorithm 
converges quickly, and is widely used in practice to design 
filters with optimal response for a given number of taps. 
However, care should be used in saying "optimal" 
coefficients, as this is implementation dependent and also 
depends on fixed or floating-point implementation as well as 
numerical accuracy.  
A typical example of a Chebyshev space is the subspace of 
Chebyshev polynomials of order n in the space of real 
continuous functions on an interval, C[a, b]. The polynomial 
of best approximation within a given subspace is defined to 
be the one that minimizes the maximum absolute difference 
between the polynomial and the function 
 
PREVIEW 
A typical FIR digital filter can be characterized by the 
transfer function 
 

 
where N is the filter length of the impulse response, h(n), 
and its frequency response is represented by 
 

 
where H(ω) is the magnitude response which is a real-
valued function and L is equal to 0 or 1. According to the 
symmetric properties of the impulse response and the filter 
length, there are four cases to be taken into account [5]. 
 
Case 1: Symmetric impulse response and odd length: L = 0 
and 

 
Where a(o)  -- h((N-1)/2) and a(k) = 2h((N-1)2-k) 
For k = 1, 2, ………………. (N-1)/2. 
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Case 2: Symmetric impulse response and even length: L = 0 
and 

 
where a(k ) = 2h(N 2 − k ) for k = 1,2,L, (N −1) 2 . 
 
Case 3: Anti-symmetric impulse response and odd length: L = 
1 and 

 
where a(k ) = 2h((N −1) 2 − k ) for k = 1,2,L, (N −1) 2 . 

 
Case 4: Anti-symmetric impulse response and even length: L 
= 1 and 

 
where a(k) = 2h(N 2 − k) for k = 1,2,L, (N −1) 2 . 
 
The least-squares approach to these filters design is to 
formulate an objective error function, fitness, as below 
 

 
where D(ω) is the desired magnitude response and R 
represents the region of design bands. 
 

III ROUNDING 
We use the result proposed in (Bartolo at al.1988) for the 
impulse response rounding given as 

 
Where h(n) is an equiripple type FIR filter which satisfies 
given specification,g 1 (n) is the new impulse response 
derived by rounding all coefficients of h(n) to the nearest 
integer, and round(.) means the round operation. The rounded 
impulse response g 1 (n)  is scaled by α in order that gain in 
dB of the rounded filter has the value(0±RP )dB. 
 in the passband , where RP   is the passband ripple. The 
rounding constant α determines the precision of the 
approximation of g(n) to h(n). Considering that the integer 
coefficient multiplication can be   accomplished with only 
shift-and-add operation, the rounded impulse response filter 
is multiplier-free. Besides the rounding constant is chosen to 
be in the form α = 2-N. where N is an integer.          

 
IV PROBLEM 

Design and plot the equirriple linear phase FIR low pass filter 
with order 36 and Normalized frequency of pass band and 
stop band are 0.15, 0.25. Using rounding technique. 
 
 

-------------------------------------------------------------- 
                        TABLE 1 
---------------------------------------------------------------- 
       Cofficients of H(z) in Example  
                    Filter length =36 
--------------------------------------------------------------- 
                    h(0)  =  -0.0088  =  h(36) 
                    h(1)  =  -0.0069  =  h(35) 
                    h(2)  =  -0.0044  =  h(34)  
                    h(3)  =   0.0004  =  h(33)   
                    h(4)  =   0.0074  =  h(32) 
                    h(5)  =   0.0131  =  h(31)     
                    h(6)  =   0.0162  =  h(30)  
                    h(7)  =   0.0111  =  h(29)   
                    h(8)  =   0.0003  =  h(28) 
                    h(9)  =   -0.0166  =  h(27) 
                    h(10)  =  -0.0307 =  h(26)  
                    h(11)  =  -0.0375 =  h(25) 
                    h(12)  = -0.0275  =  h(24)   
                    h(13)  = -0.0002  =  h(23)  
                    h(14)  =  0.0449  =  h(22)   
                    h(15)  =  0.0979  =  h(21) 
                    h(16) =  0.1498   =  h(20) 
                    h(17) =  0.1861   =  h(19) 
                    h(18) =  0.2002 
---------------------------------------------------------------- 
                  
 
   --------------------------------------------------------------      
                         TABLE II 
-------------------------------------------------------------- 
                  Implemented Result 
        Cofficients of H(z) in Example  
                    Filter length =36 
---------------------------------------------------------------- 
                         h(0)   =  0   =     h(36) 
                         h(1)   =  0   =     h(35) 
                         h(2)   =  0    =    h(34) 
                         h(3)   =  0   =     h(33) 
                         h(4)   =  0   =     h(32) 
                         h(5)   =  0   =     h(31) 
                         h(6)   =  0   =     h(30) 
                         h(7)   =  2-5  =    h(29) 
                         h(8)   =   0  =     h(28) 
                         h(9)   =   0   =    h(27) 
                         h(10)  =  -2-5 =   h(26) 
                         h(11)  =  -2-5  =  h(25) 
                          h(12)   =  -2-5 =  h(24) 
                          h(13)   =  -2-5 =  h(23) 
                          h(14)   = 0     =  h(22) 
                          h(15)  = -2-5 =  h(21) 
                          h(16) = 2-3 +2-5 = h(20) 
                          h(17)  =  2-3+2-5  =  h(19) 
                              h(18)   =  2-3+2-4 
---------------------------------------------------------------- 
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Solid line are original filter and dashed line are rounding 
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Magnitude response and N = 36 & rounding 

 
V CONCLUSION 

 Design FIR filters with rounding technique. The aim of 
optimization is only the minimization of the number of SPT 
terms. Extensive research has shown that the complexity of 
an FIR filter can be reduced by implementation its coefficient 
as sum of SPT terms and faster hardware implementation of 
the multiplication operation. 

 
REFRRENCES 

[1]  J.H.McClellan, T.W.Park and L.R.Rabiner, “FIR linear phase filter 
design program,” in program for digital signal processing, New 
York:IEEEPress,1979, pp.5.1.1-5.1.13. 

[2]   Y.C.Lim, and S.R.Parker, “FIR filter design over a discrete power two 
coefficient space,”IEEE Trans. Acoust. Speech, signal processing ling, 
Vol. ASSP-31, June 1983. 

[3]  Y.C.Lim, S.R.Parker, and A.G.Constanntinides, “Finite word length FIR 
filter design using integer programming over a discrete coefficient 
space,”IEEE Trans. Acoust. Speech, signal processing ling, Vol. ASSP-
30,pp. 661-664, Agu. 1982. 

[4]  Mitra, Kaiser, Handbook for digital processing, john wiley &sons, 1993. 
[5]  http://www.ie.ncsu.edu/kay/matlab   

 
 
 

Sangita Solanki et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4968 - 4970

4970




